Natural Gas Efficiency and Decarbonization

Steven Nadel, Executive Director
Presentation to Northeast Gas Association
April, 2019

The American Council for an Energy-Efficient Economy is a nonprofit 501(c)(3) founded in 1980. We act as a catalyst to advance energy efficiency policies, programs, technologies, investments, & behaviors.

Our research explores economic impacts, financing options, behavior changes, program design, and utility planning, as well as US national, state, & local policy.

Our work is made possible by foundation funding, contracts, government grants, and conference revenue.

aceee.org @ACEEEdc

aceee.org/research-report/u1708

Normalized Natural Gas Consumption

Source: ACEEE, Nadel 2017 with updates (based on EIA, BLS and FRED data)

Energy Consumption of New Homes and Buildings Meeting National Model Codes

Source: ACEEE analysis using DOE data

Savings from Appliance Efficiency Standards

Source: ACEEE, Nadel 2017 (based on ASAP data)

Utility Energy Efficiency Spending

Source: ACEEE, Berg et al. 2018

Net Incremental Savings from Gas-Utility Funded Programs

Source: ACEEE, Nadel 2017 and Berg et al. 2018

Utility Program Savings by State

Source: ACEEE, Nadel 2017 (data from Berg et al. 2018)

Total 2015 Savings from Utility-Funded Programs as a % of Sales

State	Savings as % of R+C sales
Vermont	6.4
Minnesota	5.7
Massachusetts	5.2
New Hampshire	5.0
Rhode Island	4.9
Michigan	4.4
Wisconsin	4.0
Oregon	3.6
Iowa	3.5
Arizona	2.8
California	2.7
Utah	2.6

Source: ACEEE, Nadel 2017

State with Gas Decoupling and Performance Incentives

States with Natural Gas Savings Targets

Comparison of States with and without Gas Savings Targets

Policy	No. of states	Average EE \$/residential customer	Avg. EE savings as % of R+C sales
No target	33	\$4	0.08%
Target	17	\$33	0.82%

Source: ACEEE, Nadel 2017 (using 2015 data

from Berg et al. 2016

ACEEE Estimate of 2030 Savings Potential

26% potential

Perhaps half achievable

Source: ACEEE, Nadel 2017

Emerging Areas

- Combined heat and power, particularly as a resiliency strategy for hospitals and other critical infrastructure
- Transportation, particularly heavy trucks
- Coordination between gas, electric and water utilities
- Electrification, particularly vehicles and space/water heating

Combined Heat and Power

Texas Medical Center, Houston

Rainier Advanced Materials, Florida

Natural Gas for Transportation

(CNG)

(Long haul; primarily LNG)

EV's may be eclipsing NG for:

America's Clean Energy Frontier

Source: NRDC, 2017

ACEEE Reports on Electrification

- <u>Comparative Energy Use of Residential Furnaces</u> and Heat Pumps, May 2016
- Opportunities for Energy and Economic Savings by Replacing Electric Resistance Heat with Higher Efficiency Heat Pumps, May 2016
- Energy Savings, Consumer Economics, and Greenhouse Gas Emissions Reductions from Replacing Oil and Propane Furnaces, Boilers, and Water Heaters with Air-Source Heat Pumps, July 2018

Lifecycle Cost Savings from Converting an Oil Furnace to a Heat Pump at Time of Replacement

Source: Nadel 2018, Savings from Replacing Oil and Propane Heating with Heat Pumps, ACEEE

Lifecycle Cost Savings from Converting a Propane Furnace to a Heat Pump at Time of Replacement

Lifecycle Cost Savings from Installing Ductless Heat Pumps in Homes with Oil or Propane Boilers at Time of Replacement

Consumer Paybacks – Oil & Propane at Time of Equipment Replacement

Average simple payback period (years)								
Comparison	US	West	Midwest	Northeast	Southeast			
Oil furnace (83% AFUE) vs. HP (8.5 HSPF), includes AC savings	0.9	1.4	1.3 in MO; no savings in Upper MW	1.9	0.8			
Propane furnace (80% AFUE) vs. HP (8.5 HSPF), includes AC savings	1.5	1.7	3.4 in MO; no savings in Upper MW	2.0	1.3			
Oil boiler (86% AFUE) vs. ductless HP, without AC	4.4	7.3	18.8	6.2	5.1			
Propane boiler (84% AFUE) vs. ductless HP, without AC	16.1	12.1	19.8	8.5	9.1			
Std. oil water heater to HPWH (2.0 rated EF)	Immediate	Examined only at a national level)			
Std. propane water heater to HPWH (2.0 rated EF)	3.9							

Note: Payback periods are typically longer relative to natural gas systems.

Source: Nadel 2018, Savings from Replacing Oil and Propane Heating with Heat Pumps, ACEEE

Electrification – Gas to Heat Pumps

Comparison of source energy use: 95% AFUE furnace vs. 10.3 HSPF Heat Pump

Source: Nadel 2016, Comparative Energy Use of Residential Gas Furnaces and Electric Heat Pumps, ACEEE

Lifecycle Cost Economics – Natural Gas Furnaces vs. Heat Pumps

Source: Nadel 2016, Comparative Energy Use of Residential Gas Furnaces and Electric Heat Pumps, ACEEE

Lifecycle Cost Comparison for Water

Source: Nadel 2018, Savings from Replacing Oil and Propane Heating with Heat Pumps, ACEEE

RMI Study on Heat Pumps

- Figures are 15 year NPV costs (1000\$)
- https://rmi.org/r eport-releaseelectrifyingbuildings-fordecarbonization/

Replace Electric Resistance with Heat Pumps

Meeting All Heating Needs with Heat Pumps

- Possible with regular heat pumps down to ~20 F
- With cold climate heat pumps down to ~ 5 F
 - Need to size heat pump for design loads
 - Pay attention to air circulation
 - Weatherizing helps
 - More work needed to develop cold climate <u>ducted</u> HP
- In areas where temperatures get below zero, weatherizing essential
 - Very efficient homes can get by with a simple electric coil in the air intake
 - Less efficient homes may continue to need an oil/ propane/natural gas backup for very cold days

Niches for Home Heat Pumps

- New construction
- Homes with electric resistance heat
- Homes with oil and propane heat
 - But likely to be hybrid systems for existing homes in very cold climates
- Gas heated homes in warm climates at the time the AC needs to be replaced

Beneficial Electrification

We consider electrification "beneficial" when:

- Reduces energy consumption (total source BTUs)
- Lowers customer costs
- Reduces greenhouse gas emissions (GHG)

Electricity Consumption Under Several Electrification Scenarios

Source: NREL

2018

Peak Loads in 2050 in a High Electrification Scenario

Source: NREL 2018

Electrification and the Grid, Pipes

The Grid

- Northeast could eventually become winter peaking
- Need to do more to explore winter demand response
 - Applies to both electricity and natural gas
- Gas generation plants to help balance load
- Some long-term interest in using extra renewable energy to generate hydrogen

Pipes

- Extensions of distribution system becomes questionable – will there be 30+ years of demand?
- For existing distribution, if electrification takes off, need to figure out fair ways to recoup gas distribution costs

2019/2020 ACEEE Conferences

FORUM ON CONNECTED AND AUTOMATED VEHICLES: ENERGY IMPACTS	MAY 6, 2019	WASHINGTON, DC
SUMMER STUDY ON ENERGY EFFICIENCY IN INDUSTRY	AUGUST 12-15, 2019	PORTLAND, OR
NATIONAL CONFERENCE ON ENERGY EFFICIENCY AS A RESOURCE	OCTOBER 15-17, 2019	MINNEAPOLIS, MN
BEHAVIOR, ENERGY, AND CLIMATE CHANGE CONFERENCE	NOVEMBER 17-20, 2019	SACRAMENTO, CA
CONFERENCE ON HEALTH, ENVIRONMENT, AND ENERGY	JANUARY 21-23, 2020	NEW ORLEANS, LA
RURAL ENERGY CONFERENCE	FEBRUARY 25, 2020	CHICAGO, IL
HOT WATER FORUM	MARCH 23 – 25, 2020	ATLANTA, GA
FINANCE FORUM	DATE TBD, 2020	NYC AREA
SUMMER STUDY ON ENERGY EFFICIENCY IN BUILDINGS	AUGUST 15-21, 2020	PACIFIC GROVE, CA

Contact Information

Steven Nadel
snadel@aceee.org
202-507-4011

