

nationalgrid

National Grid - US is an electricity and natural gas provider in northeastern United States with over 3.5 million gas customers across New York State and Massachusetts.

The gas system encompasses 33,000 miles of main and almost 2.5 million services for a total of over 61,000 miles of pipe.

Utility challenges

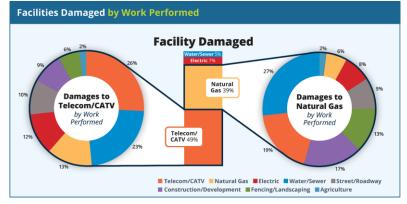
Increased excavation activity: Higher ticket volumes and construction activity means greater pressure to gain visibility to drive better performance

High program cost: Locating contractor fees continue to increase on par of faster than ticket growth, causing costs to quickly skyrocket.

Antiquated technology: Current systems are difficult to use, costly to maintain and lack the modern capabilities drive true data driven actions

Inability to track performance: In most systems, it is difficult to track key performance indicators. Utilities not currently using a TMS rely on locating contractors to provide the metrics required to manage their operations.

How is the Industry Performing?


- CGA '50 in 5' Initiative: Aim to reduce damages by 50% in 5 years
- Damage rates have decreased only slightly, remaining relatively flat compared to the ambitious 50% reduction goal
- Broadband fiber & federally funded infrastructure projects have fueled an increase in damages

How do we Solve the Problem?

- Ticket volumes and large projects are increasing in many areas
- Damages have increasing impact from regulatory bodies
- There's a finite number of resources, so how do we make them more effective?
- The use of Artificial Intelligence (AI) and Machine Learning (ML) models can help

What are the Root Causes of Damages?

According to the 2024 DIRT Report, the Top 10 causes of damage can be broken down into 4 predominant categories

Categories of Damage Causes

Locating Practices

Excavation Practices

Invalid Use of Request by Excavator

No Locate Request

34%

6%

25%

2024 DIRT Report

Locating Practices - Risk-Based Approach

Locating Practices

34

- Share risk info with locators contracted/in-house
 - O More experienced locators on high risk tickets
 - O Assign highest risk exposure tickets to in-house locators
- Prescriptive approach to QA/QC 2nd set of eyes on highest risk tickets
- Automate the process for Locator Quality data

Excavation Practices - Risk-Based Approach

Excavation Practices

35%

- Focus limited resources for onsite interventions for Very High risk tickets
- Build relationship between excavators & utility resources
- Set up notification rules to warn excavators of high exposure assets
- Focus additional attention on "worst offenders"

No Call-In Damages - Risk-Based Approach

No Locate Request

25%

- Document unticketed excavations
- Use Public Awareness team to reach out to "Worst Offenders"
- Pinpoint areas more likely to have NCIs
 - O More effective Public Awareness spend
- Leverage Locators/utility resources for excavator awareness

Urbint + nationalgrid

Damage Prevention

Reduce Third Party
Damages

Worker Safety

Prevent Serious Injuries and Fatalities

Storm Response

Restore Power Faster Post-Weather Events

Public Safety

Improve Response to Public Hazards

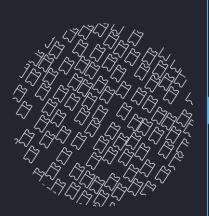
Reduced asset damages by

37%

Increased hazard recognition by

56%

Secured all crews for a major storm within


19 Minutes

Enhanced Situational awareness from **5,000** first responders

How Al / ML Can "Weed Out the Noise"

Thousands of One-Call tickets received every day Data is collected around each ticket and fed to model

3 Algorithms process ticket data and determine risk characteristics Categorizes & scores tickets for prioritization

Ticket Attributes

Work Type

Elevation/Slope

Excavator History

Seasonality

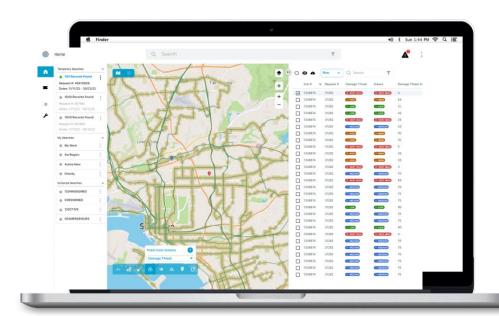
Keywords in dig ticket

Machine Learning

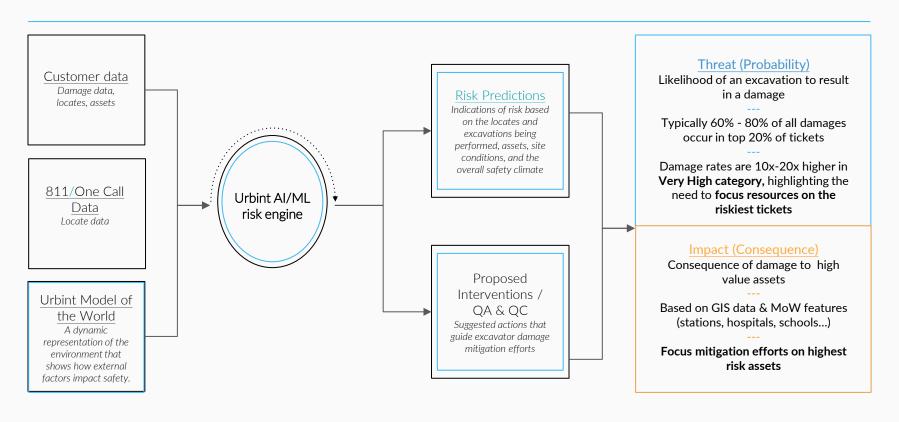
Very High Risk

High Risk

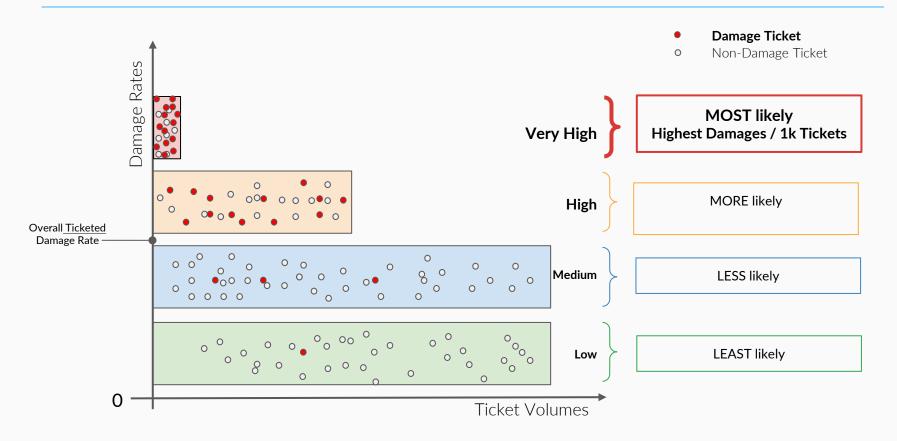
Medium



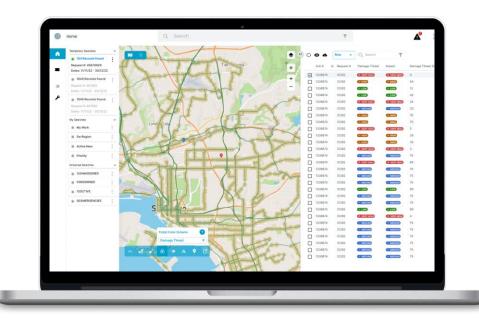
Low Risk



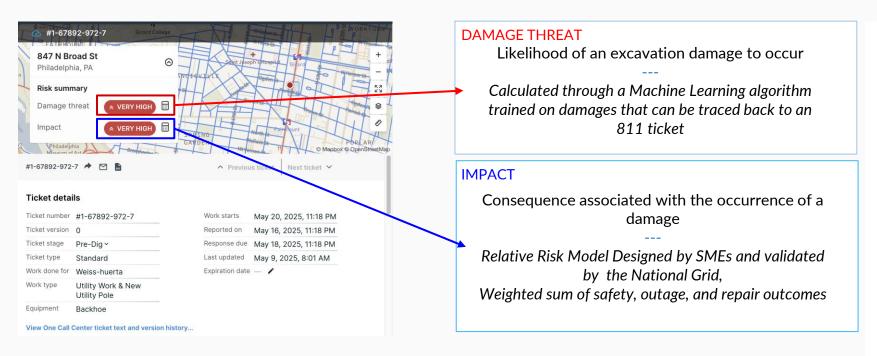
AI / ML Results for the Highest Risk Tickets


- Typically 2%-5% of tickets result in 15%-25% of damages
- Tickets in the highest category of risk are 10X-20X more likely to result in a damage
- Most utilities don't have enough resources to mitigate risk on all tickets, but can support 2%-5% which is why prioritization is essential
- Combining the "Predicted" damage risk and the "Impact" can help reduce the highest exposure for utilities

Urbint Leverages AI for Risk Mitigation



Threat Model (Probability) Categories


Damage Threat Scores

- Empowers utilities with a holistic view of risk on each ticket and the ability to target true high risk excavations (risk = likelihood x consequence)
- Urbint leverages ML to generate
 Damage Threat scores
- These scores reflect the likelihood that your assets will be damaged during excavation
- Supports a proactive approach to reduce damages

Damage Prevention Risk Engine

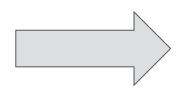
Currently, The solution displays the Damage Threat and the potential Impact of each ticket separately

Damage Threat Model Features and Categories

Trained on damages that can be traced back to an 811 ticket

The Damage Threat model focuses on ensuring that the Very High Category is optimized so that National Grid is mitigating more damages on fewer tickets. This is done by training the model on key features that will help identify these Very High threat tickets

Top Feature Groups	Top Features that drive damage threat predictions up or down				
Work Type Keywords	Type of ongoing work, based on words/ phrases like "fios", "gas", "excavation", "sewer", "sign install", "replace utility"				
Ticket Type	Is the ticket a "Rush", "Emergency" ticket type or not				
Work Type	Historical damage rates for the work type				
Contractor Reputation	Historical damage rates for the contractor				
Excavator Reputation	Historical damage rates for the excavator				
Regional Reputation	I Regional not snots & historical damage rates for the region				
Spatial	Site conditions such as elevation, slope etc.				
Gas Asset	Measure of the gas asset density in the area				



^{*} Metrics (relative likelihood of damage)quoted in this table are 'Target' model performance levels and are dependent on data quality (accuracy, completeness) and availability (timely refresh of damage data)

Damage Threat Model Features and Categories

Trained on damages that can be traced back to an 811 ticket

The Damage Threat model focuses on ensuring that the Very High Category is optimized so that National Grid is mitigating more damages on fewer tickets. This is done by training the model on key features that will help identify these Very High threat tickets

Damage Threat Category	What does it mean (targets)? ¹	Intervention Recommendation		
Very High (~1% tickets)	6.7 X MORE likely (than average) to experience a damage	Prioritize in-person interventions in this bucket		
High (~33% tickets)	2.5X MORE Likely to experience a damage	Prioritize in-person interventions on tickets in this bucket that are characterized by a Very-High Impact label		
Medium (~33% tickets)	Slightly LESS likely to experience a damage	No intervention recommended		
Low (~33% tickets)	4X LESS likely to experience a damage	No intervention recommended		

^{*} Metrics (relative likelihood of damage)quoted in this table are 'Target' model performance levels and are dependent on data quality (accuracy, completeness) and availability (timely refresh of damage data)

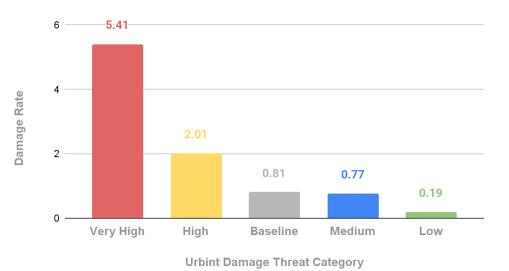
Example of elements that can contribute to risk

Excavator Reputation:

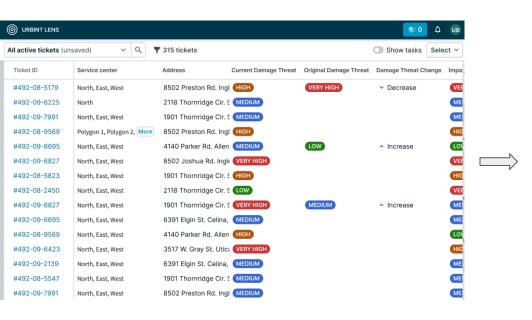
- Number of jobs that excavator has done in short/medium and long-term history
- How this excavator's historical damage rate ranks compared to other excavators in short/medium and long-term history
- Number of total damages the excavator caused in recent history

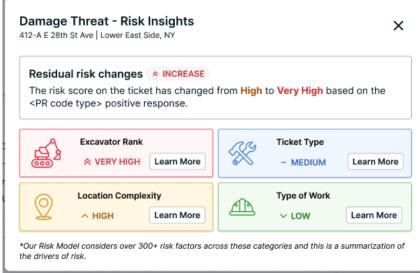
Work Type:

- How common/rare this work type/work type category is
- How this work type/work type category ranks compared to other types in damage rate
- Number of damages caused by this work type in short/medium and long-term history

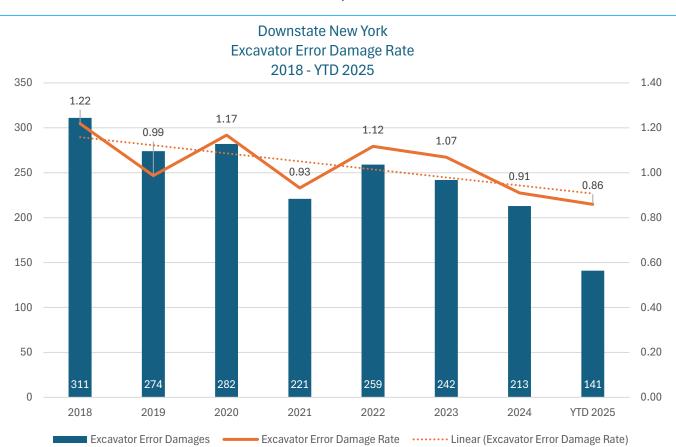

Equipment Type:

- How common this equipment type is
- How this equipment type damage rate ranks compared to other equipment types.


2025 Year-to-Date Model Performance (DNY)


- Tickets ranked Very High are 28.5x more likely to result in a damage than Low tickets
- Tickets ranked Very High are 6.7x more likely to result in a damage than picking a ticket at random

2025 National Grid (DNY) Urbint Model Performance



Residual Risk: Original vs. Updated Predictions

Consistent Improvement

Consistent Improvement

Downstate New York	2018	2019	2020	2021	2022	2023	2024	YTD 2025
One Call Tickets	255,231	277,529	241,513	237,096	231,770	226,319	233,987	164,084
Excavator Error Damages	311	274	282	221	259	242	213	141
Excavator Error Damage Rate	1.22	0.99	1.17	0.93	1.12	1.07	0.91	0.86

Key Observations

- Sustained improvement: Damage rate down ~30% since 2018.
- **2025 projection:** Lowest damage count and rate to date (0.86).
- Rate reduction sustained over seven years, demonstrating program maturity rather than workload decline indicating behavioral change rather than cyclical variation.
- Nearly 40 % fewer damages, showing strong improvement in compliance and pre-dig verification.

Path Forward for National Grid

By continuing this **AI refinement** and scaling, **National Grid's** goal is to **lead the industry in damage prevention**, ensuring **greater public safety** and a **more reliable network**.

We plan to do that by partnering and learning from our peers, embracing Best Practices, collaborating with regulators, municipalities, and contractors to achieve CGA's 50-in-5 goals.

national**grid**