

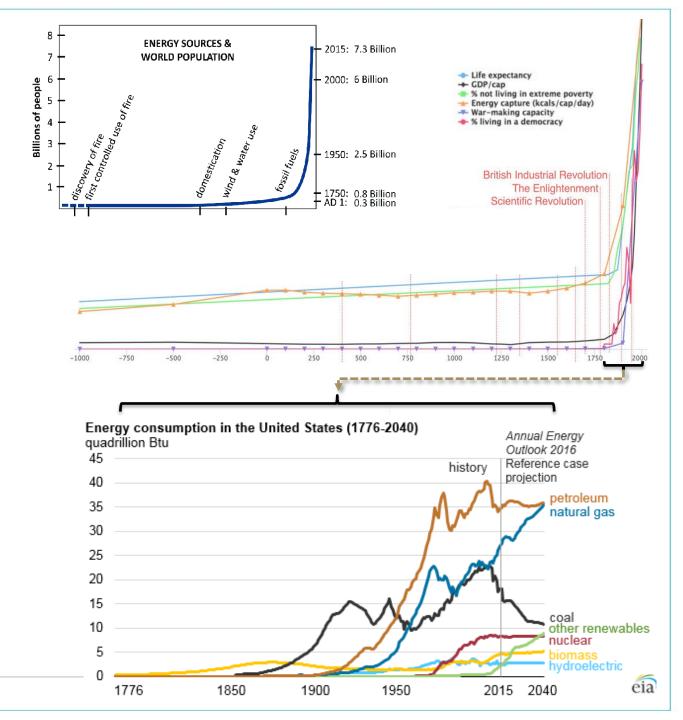
Decarbonization and Natural Gas

Will Climate Change Anxiety Undermine a Practical Transition Pathway?

Paul J. Hibbard

NGA Executive Conference September 2021

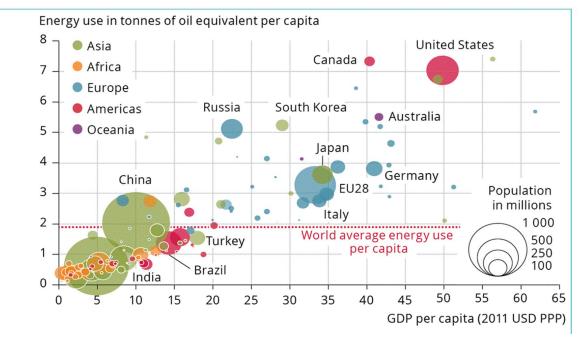
BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS


Topics

- Reminder: why are we talking about decarbonization
- Why an energy transition seems so infeasible
- How states are reacting (in the Northeast)
- Pathways to decarbonization
- Implications for natural gas, the electric system, and policy

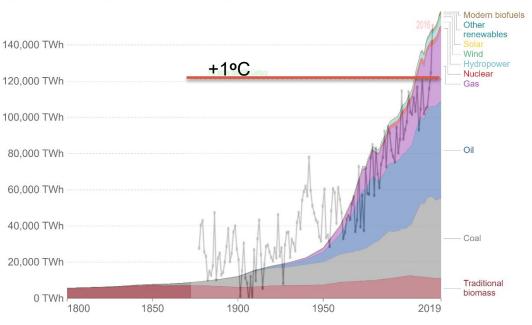
What got us here?

- 100M 500M years ago: carbon absorbed and buried
- 5M 7M years ago: humans
- Up until about 300 years ago: energy = humans, animals, biomass, water, wind
- Over 10-20 generations fossil fuels, science
- (Just about) everything that has happened since then – population growth, commerce, war, nation building, technological advancement, health, and recreation – is intractably tethered to burning fossil fuels



Why is decarbonization so hard?

- Strong links
 - Well being = wealth = energy
 - The link between energy, the economy, and human well being is absolute
 - Energy = fossil fuels
 - Always has, still does, everywhere
 - Fossil fuels = GHGs = potential disaster, for economies, societies, environment
 - States (and now the federal government?) accept the risks and urgency


Policymakers are taking real action

- Laws & mandates, not goals or targets
- Economy wide
- Minority of states, majority of US economy
- Banking on rapid technological advancements to carry on to other states
- Solar/wind, storage, transmission, H, RNG...

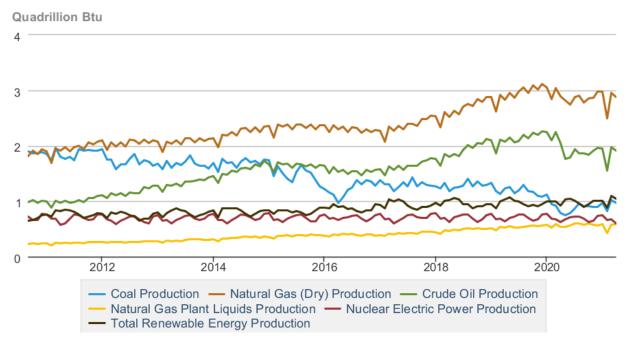
Global direct primary energy consumption Direct primary energy consumption does not take account of inefficiencies in fossil fuel production

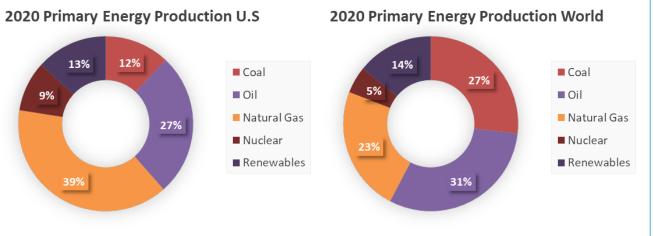
Source: Vaclav Smil (2017) and BP Statistical Review of World Energy

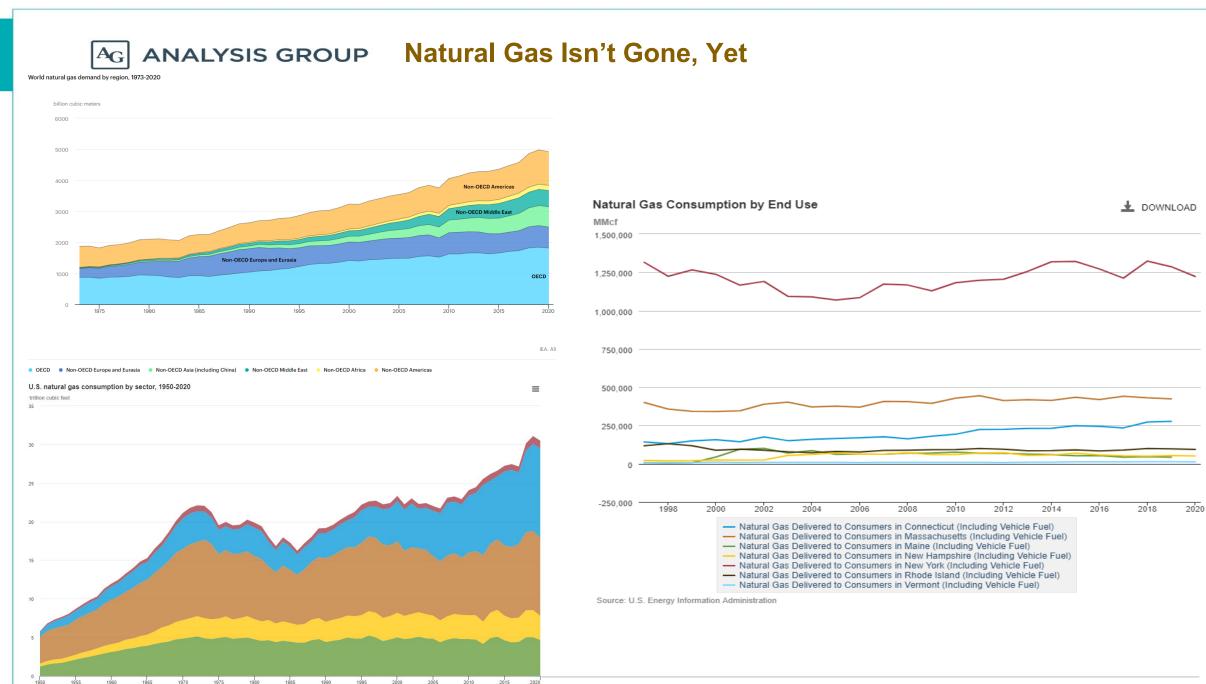
Why is this so hard?

What drives states' targets?

- Scientific consensus (IPCC)
- Stay in the 1.5-2°C range to avoid catastrophic social, economic, and environmental outcomes
- Doing this requires achieving *net zero CO*₂ by mid-century

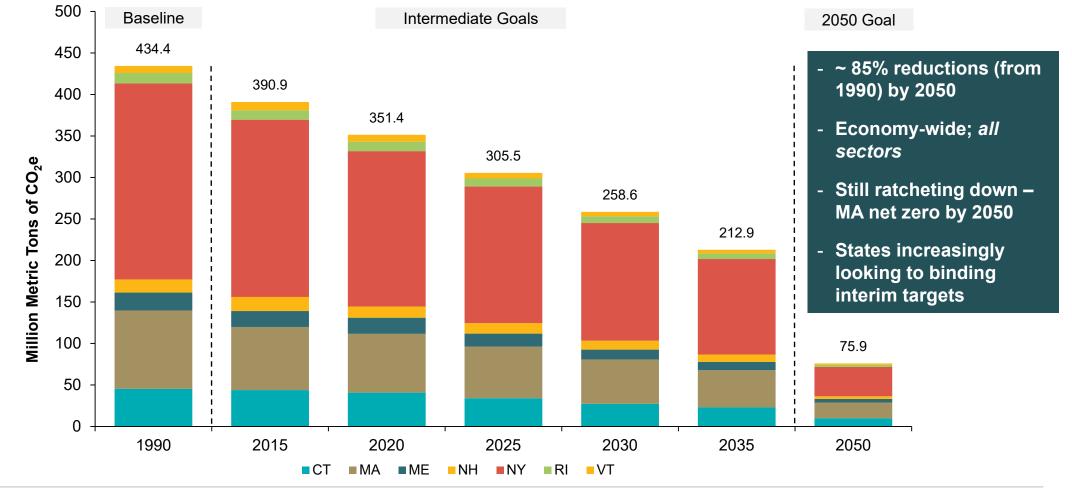

Despite progress, a long way to go


- Fossil fuels dominates energy use, in the world, in the US, *and in the Northeast*
- Past ten years has made matters worse


This will not be easy

- Transition timelines are inconceivable relative to historical change in the energy sector
- The technological solutions for full decarbonization are not readily apparent
- But: don't count on policy retreat
 - The science will not change for the better

Table 1.2 Primary Energy Production by Source



residential
commercial
industrial
electric power
transportation
force: U.S. Energy Information Administration, Monthly Energy Review, Table 4.3, April 2021, preliminary data for 2020
transportation indudes poeline and databation use and vehicle fuel.

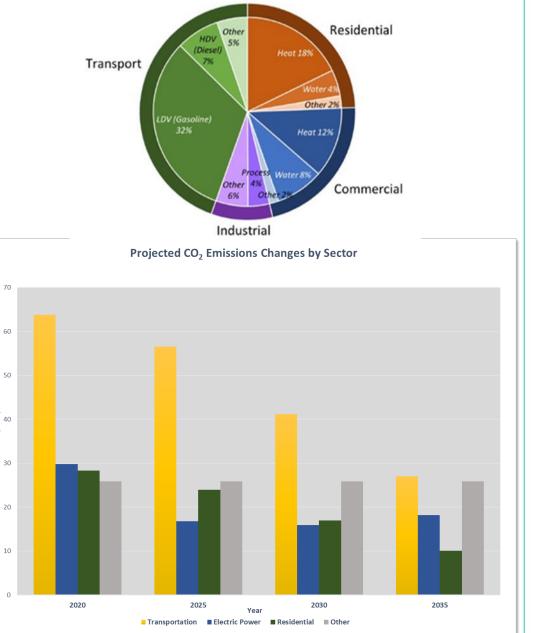
Northeast State Goals for Decarbonization to 2050

Ultimate goals, estimated interim levels

Sources: CT DEEP, MA DEP, ME DEP, NH DES, NY DEC, RI DEM, VT DEC.

The (Futile) Soapbox

- Ideal: price GHG emissions (carbon price or cap/trade), let the market sort it out, at the lowest cost
- The obvious conundrum: carbon pricing at levels needed to meet mandates is not likely to become the primary basis for meeting Northeast state climate targets
 - Politically suspect, at best
 - The numbers would have to be high very high for it to work
 - Supportive policymakers, legislators, governors remain too few
 - Opposed by key groups and industries, including those that benefit from entrenched policies
- The only things more obvious:
 - This is crazy
 - Because of this, consumers and businesses will pay *substantially* more to get to net zero outcomes



The Pathway?

- Result: disparate (and desperate) mix of not well-coordinated policy approaches
 - Energy efficiency, long-term contracts, net metering, RPS, CES, building codes, tax policy, stimulus...
- Pathway du-jour: convergence around one idea for decarbonization of the economy
 - Electrification of transportation sector through organized buildout of vehicle charging (roadside and at-home), and direct subsidies for EV purchases
 - Electrification of building sector, through heat pump requirements in new construction, and funding for replacement of existing non-electric heating
 - Simultaneous rapid decarbonization of electric sector
 - R&D support for "holy grail" technologies (RNG, H, carbon capture and storage, modular nuclear etc.)

Direct Fossil Fuel Use by End Use and Sector in New York and New England⁶³

Building Sector

ANALYSIS GROUP

AG

State/Mitigation Measure	Heat Pumps/ Electrification	Energy Efficiency/ Weatherization	Appliance Efficiency	Building	Sustainable Building Materials	Biomass/Wood Heating Fuel	Combined Heat and Power (CHP)	Hydrogen	RNG	Battery Storage
Maine	Х	Х	X		Х	X	X	• •		
New Hampshire		X	х	Х	Х	Х	Х			
Vermon	Х	Х	х	Х	Х	Х	Х			
Massachusett	Х	Х	×	Х		Х		Х		
Rhode Island	Х	Х		Х						Х
Connecticut	Х	Х	Х	Х		Х	Х			
New York	Х	Х	Х			Х		Х	Х	
New Jerse	Х	Х	Х	Х			Х			
Pennsylvania	Х	×	х	Х			Х			
Delaware	Х	X	х	Х	1					
Maryland	\backslash /	Х	х	Х	/		Х			
DC	X	Х	Х	X			Х			

- Difficult sector to transition, yet remains a focus of states
- A lot of existing inventory with relatively long useful lives
- Technological and cost uncertainty around heat pump performance
- GHG benefits differ across fuels; Value of transitioning gas in buildings is questionable at best

Relative GHG Benefits in Building Sector

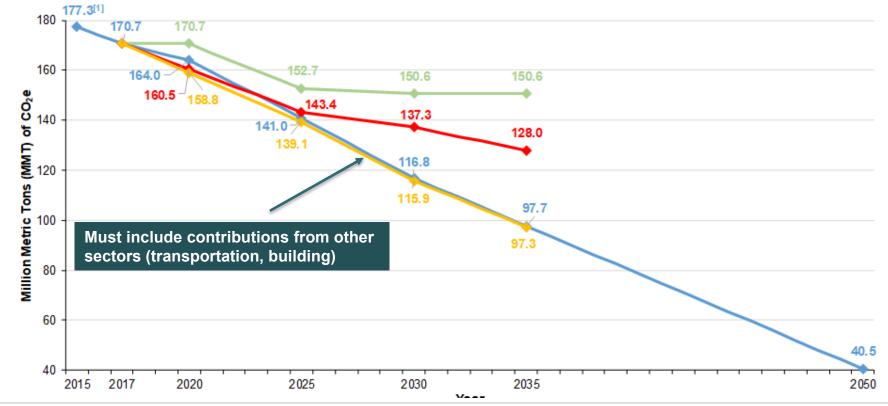
- Switching to heat pumps can result in emissions reduction
 - Regardless of existing fuel type (if gas, oil, or propane)
 - Even after accounting for emissions increase from increased electric demand
 - But several important factors:
 - Power system is nearly always gas on the margin in New England, muting benefits of switching from natural gas
 - Potential need for supplemental heating can swing the needle for gas switching from cost and emission perspectives
 - Suggests a focus on a fuel prioritization for heating electrification

Net Emissions Reduction (MT CO₂) Per Average New England Household

Switching from Gas, Oil, and Propane to Electric Heat Pumps

	Fuel Type		
	Gas	Oil	Propane
Annual Fuel Used for Heating in Average NE Home (Therms or Gallons)	831	588	913
Average Decrease in Fuel (MMBtu)	83	81	83
CO ₂ Gas Composite Heating Emission Factor (kg / MMBtu)	58	88	74
Emission Reduction (kg CO2)	4,862	7,200	6,140
Total Emissions Decrease (MT CO ₂) Per Average Household	4.86	7.20	6.14
Annual Electricity Used for Heating in Average NE Home (kWh)	9,925	9,925	9,925
Total Increase in Gas Demand (MMBtu)	58.1	58.1	58.1
CO ₂ Gas Composite Electric Emission Factor (kg / MMBtu)	58	58	58
Emission Reduction (kg CO2)	3,347	3,347	3,347
Total Emissions Increase (MT CO ₂) Per Average Household	3.35	3.35	3.35
Net Emissions Reduction (MT CO ₂) Per Average Household	1.52	3.85	2.79

Sources: American Community Survey, US Census Bureau, 2017; Source Energy and Emissions Analysis Tool (SEEAT).

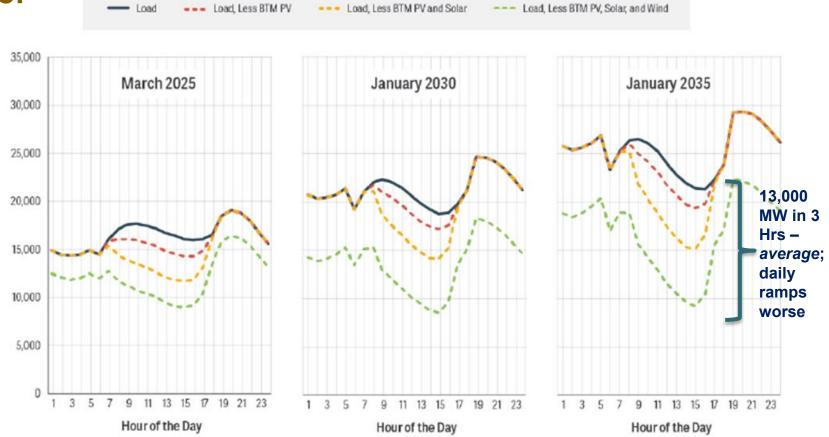


Policy Focus: Electrification

New England Emission Reduction Standards Compared with Emission Reductions from Renewable Resource Additions and Increased Electrification

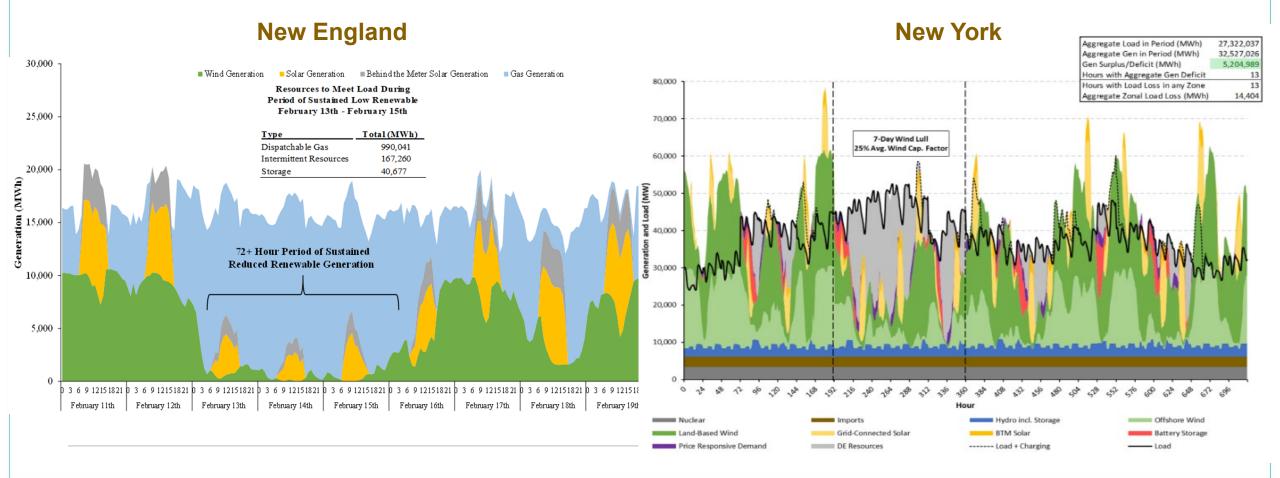
----Projected Economy-Wide Emission Goals

- ----- Projected Economy-Wide Emissions Assuming Currently Planned Resource Mixture Reductions
- Projected Economy-Wide Emissions Assuming Low Electrification/Contract Resources (LECR)
- ---- Projected Economy-Wide Emissions Assuming High Electrification/Carbon Pricing (HECP)


Figure 2: Average Ramp-Ups for the Month that the Peak Ramp Occurs High Electrification – Winter Season

Impact on Electric Sector

- EV most significant GHG reductions (when do folks charge?)
- Heating benefits flow from oil, propane, wood conversions (*not so much* natural gas)


-oad (MW)

- Peak quickly shifts to winter
- Major load ramp challenges emerge within a decade
- Gas generation remains <u>vitally</u> important absent economically viable alternative (e.g., RNG, H)

AG ANALYSIS GROUP Power System Operational Challenges

Analysis Group studies of rapid expansion of variable resources in New England and New York In both cases, multiple extended periods of low solar/wind output, when even extensive storage capacity insufficient to meet reliability needs

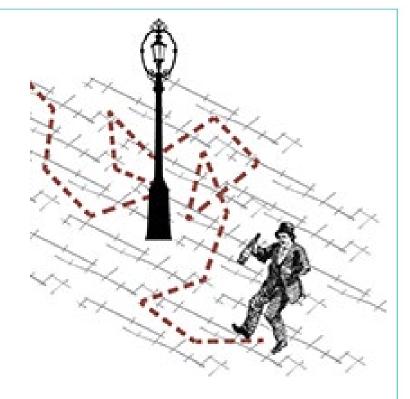
Through the Looking Glass

- Possible result over next **10-15 years** in Northeast U.S.
 - Rapid increase in demand as electric sector acts as GHG sponge for transportation, building sectors
 - More frequent and severe major weather events (coastal storms, ice storms, severe heat)
 - Changing load profile shift to winter peak, demand highest in early evening (no sun)
 - 5-10 GW on- and off-shore wind
 - 5-10 GW grid-connected and BTM solar
 - 1-3 GW HVDC hydro, with questionable availability in cold weather
 - 1-5 GW Battery storage?
 - Loss of coal and oil-fired resources; no new natural gas infrastructure, challenges to siting even transmission
 - Loss of some gas resources, and stored energy (oil tanks, LNG)?
- Does this seem plausible to anyone?

Implications for Energy Infrastructure (esp. Natural Gas) in the Northeast

- Avoid the temptation to "just say no" carefully assess the role of natural gas in the transition
- An economically-prioritized path to decarbonization would likely lean on the important transitional role of natural gas
 - In supporting electrification of the transportation and other sectors
 - In sustaining power system reliability and "having the back" of rapid renewable integration
- In mitigating the cost of a rapid transition while technologies evolve to capture the later – and undoubtedly more difficult – phases of decarbonization
- Certain factors can guide policy approach
 - Zero-carbon resources, technologies, practices must grow rapidly
 - There will be an important residual electricity supply need for 1-2 decades (at least), likely natural gas
 - In the building sector, there is a rationale for prioritizing electrification policies and investments to

(1) new applications before existing, and


(2) oil/propane/wood/baseboard electric heating before gas

Wrap Up

- The destination is known (...more or less)
 - 2040 2050
 - _ GHG emissions ~ 80% 100% less than now
 - Across all sectors of the economy
 - Will require actions/technologies not currently in play
- A random walk to compliance is not an option
 - States are being proactive, evaluating LT pathways
 - Challenge: increasingly difficult to forecast beyond 5-10 years
 - Emerging technologies in all sectors (H, RNG, storage, OSW, EVs, heat pumps...)
 - Accelerating changes in cost factors, operational capabilities; breakthroughs possible
 - Resource-specific policies and investments today will soon look outdated
 - There are real reliability challenges as the electric sector absorbs other sector demands
 - All will be affected by the transition consumers, businesses, shareholders
 - The price tag of inefficient policy will be extremely large
 - A more rationale approach to natural gas infrastructure must emerge

Paul J. Hibbard

Principal

Analysis Group, Inc. phibbard@analysisgroup.com 617.425.8171